Skip to content

第三节 高阶导数

Tables of Content

I. 高阶导数的概念

顾名思义啊,高阶导数,就是指导数的导数,例如y=f(x)y = f(x)y=f(x)y' = f'(x)y=f(x)y'' = f''(x)这样的三个函数,y=f(x)y' = f'(x)y=f(x)y = f(x)的导函数,y=f(x)y'' = f''(x)y=f(x)y' = f'(x)的导函数,而y=f(x)y'' = f''(x)则是y=f(x)y = f(x)的高阶导数(二阶导数),记作yy''d2ydx2\dfrac{\mathrm{d}^2 y}{\mathrm{d} x^2}

类似的,y=f(x)y = f(x)的导数的导数是它的二阶导数,它的二阶导数的导数是它的三阶导数……总而言之:y=f(x)y = f(x)n1n - 1阶导数的导数是它的nn阶导数,对于更高阶的导数,可以表示为y(n)y^{(n)}dnydxn\dfrac{\mathrm{d}^ny}{\mathrm{d}x^n}

II. 高阶导数的计算

2.1 常见的高阶导数公式

  1. (ex)(n)=ex(e^x)^{(n)} = e^x(ax)(n)=axlnna(a^x)^{(n)} = a^x \ln^n a
  2. (sinx)(n)=sin(x+πx2)(\sin x)^{(n)} = \sin (x + \dfrac{\pi x}{2})
  3. (cosx)(n)=cos(x+πx2)(\cos x)^{(n)} =\cos (x + \dfrac{\pi x}{2})
  4. (xa)(n)=a(a1)...(an+1)xan,(an)(x^a)^{(n)} = a(a - 1) \, ... \, (a - n + 1)x^{a - n} ,\, (a \geq n)
  5. (1x)(n)=(1)nn!x1n(\dfrac{1}{x})^{(n)} = (-1)^n n! x^{-1 - n}
  6. (lnx)(n)=(1)n1(n1)!xn(\ln x)^{(n)} = (-1)^{n - 1} (n - 1)! x^{-n}

2.2 高阶导数运算法则

  1. (u±v)(n)=u(n)+v(n)(u \pm v)^{(n)} = u^{(n)} + v^{(n)}
  2. (uv)n=k=0nCnku(nk)v(k)(uv)^{n} = \sum^{n}_{k = 0} C^{k}_{n} u^{(n - k)} v^{(k)}[1](莱布尼茨公式)
  • 例1:已知函数f(x)f(x)具有任意阶导数,且f(x)=[f(x)]2f'(x) = \left[ f(x) \right]^2,则当nN+n \in \mathbb{N}_+n2n \geq 2时,f(x)f(x)nn阶导数f(n)(x)f^{(n)}(x)如何表示?

    Answer
  • 例2:求函数f(x)=x2ln(1+x)f(x) = x^2 \ln (1 + x)x=0x = 0处的nn阶导数f(n)(0)(n3)f^{(n)}(0) \, (n \geq 3).

    Answer

    根据莱布尼茨公式可知:

    观察这个式子,当k3k \geq 3(x2)(k)=0(x^2)^{(k)} = 0,可见k3k \geq 3的项的值通通为00,而前两项当x=0x = 0时也为00,因此只需计算第三项的值:

    接下来求y=ln(1+x)y = \ln (1 + x)nn阶导数:

    • n=1n = 1时:

    • n=2n = 2时:

    • n=3n = 3时:

    • n=4n = 4时:

    • n=nn = n时:

    则最终结果为:

III. 反函数的二阶导数

设函数y=f(x)y = f(x)具有二阶导数f(x)f''(x),且f(x)0f'(x) \neq 0x=φ(y)x = \varphi(y)y=f(x)y = f(x)的反函数,则:

  • 例3:已知f(x)=ae2x(a>0)f'(x) = ae^{2x} \, (a \gt 0),求f(x)f(x)的反函数的二阶导数。

    Answer
    • 积分法:

    • 公式法:

      首先求出f(x)f''(x)

      然后将f(x)f'(x)f(x)f''(x)代入公式:

IV. 参数方程所确立的函数的二阶导数

设参数方程:

其确定了yyxx间的关系,若x=φ(x)x = \varphi(x)具有单调连续的反函数t=φ1(x)t = \varphi^{-1}(x)x=φ(t)x = \varphi(t)y=ψ(t)y = \psi(t)皆二阶可导,且φ(t)0\varphi'(t) \neq 0,则:

  • 例4:设函数y=y(x)y = y(x)由参数方程:

    所确定,则d2ydx2=\dfrac{\mathrm{d}^2y}{\mathrm{d}x^2} = _____.

    Answer

    首先求得dy/dtdx/dt\dfrac{\mathrm{d}y / \mathrm{d}t}{\mathrm{d}x / \mathrm{d}t}

    然后计算ddt(dy/dtdx/dt)dtdx\dfrac{\mathrm{d}}{\mathrm{d}t} (\dfrac{\mathrm{d}y / \mathrm{d}t}{\mathrm{d}x / \mathrm{d}t}) \cdot \dfrac{\mathrm{d}t}{\mathrm{d}x}


  1. Cnk=n!k!(nk)!C_{n}^{k} = \dfrac{n!}{k!(n - k)!} ↩︎