Skip to content

第二节 不定积分的基本积分法

Tables of Content

I. 换元积分法

1.1 第一类换元积分法(凑微分法)

F(x)F(x)f(x)f(x)的一个原函数,u=φ(x)u = \varphi(x)可导,则:

Tip

  1. 关键在于将积分变量xx的微分dx\mathrm{d}x凑成中间变量g(x)g(x)的微分dg(x)\mathrm{d}g(x)
  2. 被积函数中存在两个函数且两个函数存在“导数关系”
  • 例1:求下列不定积分:

    1. dxx(1+2lnx)\int \dfrac{\mathrm{d}x}{x(1 + 2\ln x)}

      Answer
    2. dxa2+x2(a0)\int \dfrac{\mathrm{d}x}{a^2 + x^2} (a \neq 0)

      Answer
    3. sin3xdx\int \sin^3 x \mathrm{d}x

      Answer
    4. dxx(1+x)(x>0)\int \dfrac{\mathrm{d}x}{\sqrt{x(1 + x)}} (x \gt 0)

      Answer
    5. 1a2x2dx\int \dfrac{1}{\sqrt{a^2 - x^2}} \mathrm{d}x

      Answer
    6. 1x2a2dx\int \dfrac{1}{x^2 - a^2} \mathrm{d}x

      Answer
    7. 1x2+a2dx\int \dfrac{1}{x^2 + a^2} \mathrm{d}x

      Answer
    8. 1x2+8x+25dx\int \dfrac{1}{x^2 + 8x + 25} \mathrm{d}x

      Answer
    9. f(axn+b)xn1dx\int f(ax^n + b) \cdot x^{n - 1} \mathrm{d}x

      Answer

      F(x)=f(x)F'(x) = f(x)

    10. x31+x2dx\int \dfrac{x^3}{\sqrt{1 + x^2}} \mathrm{d}x

      Answer

1.2 第二类换元积分法

x=φ(t)x = \varphi(t)是单调、可导函数,若φ(t)0\varphi'(t) \neq 0,则有:

Tip

  1. 整体代换:被积函数中含有ax+bn\sqrt[n]{ax + b}ax+bcx+dn\sqrt[n]{\dfrac{ax + b}{cx + d}}时,令tt等于根式整体

  2. 三角代换:被积函数中含有a2x2\sqrt{a^2 - x^2}x2a2\sqrt{x^2 - a^2}x2+a2\sqrt{x^2 + a^2}时,令xx变为关于tt的三角函数的形式,以去除根号

  3. 倒数代换:当P(x)Q(x)\dfrac{P(x)}{Q(x)}P(x)P(x)次幂低于Q(x)Q(x)次幂时,令x=1tx = \dfrac{1}{t}

  4. 其他代换:如ax=ta^x = tarcsinx=t\arcsin x = tarctanx=t\arctan x = t

  • 例2:求下列不定积分:

    1. 1x+x3dx\int \dfrac{1}{\sqrt{x} + \sqrt[3]{x}} \mathrm{d}x

      Answer
    2. dxx(x5+1)\int \dfrac{\mathrm{d}x}{x(x^5 + 1)}

      Answer
    3. x+11x+1+1dx\int \dfrac{\sqrt{x + 1} - 1}{\sqrt{x + 1} + 1} \mathrm{d}x

      Answer
    4. a2x2dx(a>0)\int \sqrt{a^2 - x^2} \mathrm{d}x \, (a \gt 0)

      Answer
    5. 1x2+a2dx\int \dfrac{1}{\sqrt{x^2 + a^2}} \mathrm{d}x

      Answer
    6. 1x2a2dx\int \dfrac{1}{\sqrt{x^2 - a^2}} \mathrm{d}x

      Answer

II. 分部积分法

u=u(x)u = u(x)v=v(x)v = v(x)均有连续的导数,则:

或:

  • 例3:求下列不定积分:

    1. xarctanxdx\int x \arctan x \mathrm{d}x

      Answer
    2. x2lnxdx\int x^2 \ln x \mathrm{d}x

      Answer
    3. excosxdx\int e^x \cos x \mathrm{d}x

      Answer

      由此可知:

      则:

      则:

    4. exdx\int e^{\sqrt{x}} \mathrm{d}x

      Answer
  • 例4:设f(lnx)=ln(1+x)xf(\ln x) = \dfrac{\ln (1 + x)}{x},计算f(x)dx\int f(x) \mathrm{d}x.

    Answer

    t=lnxt = \ln x,则x=etx = e^t,则:

    f(x)f(x)代入不定积分: