Skip to content

第二节 洛必达法则

  • :(a=x0,x0,x0+,+,,a = x_0, x_0^-, x_0^+, +\infty, -\infty, \infty

    1. xax \to a时,f(x)f(x)g(x)g(x)皆趋于00\infty
    2. xax \to a时,f(x)f'(x)g(x)g'(x)均存在且g(x)0g'(x) \neq 0
    3. limxaf(x)g(x)\lim_{x \to a} \dfrac{f'(x)}{g'(x)}存在或为\infty

Tip

  1. 抽象函数的极限利用洛必达法则时要首先验证是否满足条件二
  2. limxaf(x)g(x)\lim_{x \to a} \dfrac{f'(x)}{g'(x)}不存在,则洛必达法则失效
  3. \lim_{x \to a} \dfrac{f(x)}{g(x)} = \lim_{x \to a} \dfrac{f'(x)}{g'(x)} (0/0, \infty/\infty) = \lim_{x \to a} \dfrac{f''(x)}{g''(x)} (0/0, \infty/\infty) = \dots
  • 例1:求此极限:

    Answer
  • 例2:求此极限:

    Answer
  • 例3:求此极限:

    Answer

    设f(x) = nx \ln (\frac{a_1^{\frac{1}{x}} + a_2^{\frac{1}{x}} + \dots + a_n^{\frac{1}{x}}}{n})