Skip to content

第二节 偏导数与全微分

Tables of Content

I. 偏导数

1.1 偏导数的定义

设函数z=f(x,y)z = f(x, y)在点(x0,y0)(x_0, y_0)的某一邻域内有定义,当yy固定在y0y_0,而xxx0x_0处有增量Δx\Delta x时,相应的函数有增量:

如果:

存在,则称此极限为函数z=f(x,y)z = f(x, y)在点(x0,y0)(x_0, y_0)处对xx的偏导数,记作:

类似地,函数z=f(x,y)z = f(x, y)在点(x0,y0)(x_0, y_0)处对xx的偏导数定义为:

记作:

Tip

  1. 函数f(x,y)f(x, y)在点(x0,y0)(x_0, y_0)处的偏导数存在 \Leftrightarrow fx(x0,y0)f_x'(x_0, y_0)fy(x0,y0)f_y'(x_0, y_0)均存在
  2. fx(x0,y0)f_x'(x_0, y_0)意味着函数f(x,y)f(x, y)在点(x0,y0)(x_0, y_0)处相对于xx轴方向的切线的斜率,fy(x0,y0)f_y'(x_0, y_0)同理
  3. 函数在一点处偏导数的求法:
    • 定义法:适用于分段函数、抽象函数
    • 代入法:若要求fx(x0,y0)f_x'(x_0, y_0),直接将y=y0y = y_0代入得到一元函数f(x,y0)f(x, y_0),再对其求导
    • 偏导函数法:将偏导函数求出来,再将点代入
  • 例1:设函数f(x,y)=eπy+(x1)arctanxyf(x, y) = e^{\pi y} + (x - 1) \arctan \sqrt{\dfrac{x}{y}},求fx(1,1)f_x'(1, 1)fy(1,1)f_y'(1, 1).

    Answer

    定义法:

    代入法:

  • 例2:设f(x,y)=xy+x2+y3f(x, y) = xy + x^2 + y^3,求fx(0,1)f_x'(0, 1)fx(1,0)f_x'(1, 0)fy(0,2)f_y'(0, 2)fy(2,0)f_y'(2, 0).

    Answer

    定义法:

    偏导函数法:

  • 例3:设f(x,y)=x2+y4f(x, y) = \sqrt{x^2 + y^4},试判断f(x,y)f(x, y)(0,0)(0, 0)处是否连续、偏导数是否存在?

    Answer
  • 例4:设:

    试判断f(x,y)f(x, y)在点(0,0)(0, 0)处是否连续、偏导数是否存在?

    Answer

Tip

多元函数中的存在性与连续性之间并无关系

1.2 高阶偏导数

设函数z=f(x,y)z = f(x, y)在区域DD内具有偏导数:

于是在DDfx(x,y)f_x'(x, y)fy(x,y)f_y'(x, y)都是关于xxyy的函数,如果这两个函数的偏导数也存在,那么便称其为函数z=f(x,y)z = f(x, y)的二阶偏导数,记作:

其中2zxy\dfrac{\partial^2 z}{\partial x \partial y}2zyx\dfrac{\partial^2 z}{\partial y \partial x}z=f(x,y)z = f(x, y)的两个二阶混合偏导数、2zx2\dfrac{\partial^2 z}{\partial x^2}2zy2\dfrac{\partial^2 z}{\partial y^2}z=f(x,y)z = f(x, y)的两个二阶纯偏导数

Tip

定理:若fxy(x,y)f_{xy}''(x, y)fyx(x,y)f_{yx}''(x, y)DD上连续,则fxy(x,y)=fyx(x,y)f_{xy}''(x, y) = f_{yx}''(x, y)

  • 例5:设z=x3y23xy3xy+1z = x^3 y^2 - 3x y^3 - xy + 1,求2zx2\dfrac{\partial^2 z}{\partial x^2}2zy2\dfrac{\partial^2 z}{\partial y^2}2zxy\dfrac{\partial^2 z}{\partial x \partial y}2zyx\dfrac{\partial^2 z}{\partial y \partial x}.

    Answer
  • 例6:验证函数z=lnx2+y2z = \ln \sqrt{x^2 + y^2}满足方程2zx2+2zy2=0\dfrac{\partial^2 z}{\partial x^2} + \dfrac{\partial^2 z}{\partial y^2} = 0.

    Answer

II. 全微分

2.1 全微分的定义

z=f(x,y)z = f(x, y)U(x0,y0)U(x_0, y_0)上有定义,且(x0+Δx,y0+Δy)U(x0,y0)(x_0 + \Delta x, y_0 + \Delta y) \in U(x_0, y_0),若:

则称f(x,y)f(x, y)在点(x0,y0)(x_0, y_0)处可微,且线性主部AΔx+BΔyA \Delta x + B \Delta y称为f(x,y)f(x, y)在点(x0,y0)(x_0, y_0)处的全微分,记作:

2.2 可微的条件

2.2.1 可微的必要条件

  1. f(x,y)f(x, y)在点(x0,y0)(x_0, y_0)处可微,则它必然也在点(x0,y0)(x_0, y_0)处连续

    Proof

    因为f(x,y)f(x, y)在点(x0,y0)(x_0, y_0)处可微,所以:

    对两边同时取极限可得:

    然后进行换元:

    所以最终可得:

  2. f(x,y)f(x, y)在点(x0,y0)(x_0, y_0)处可微,则A=fx(x0,y0)A = f_x'(x_0, y_0)B=fy(x0,y0)B = f_y'(x_0, y_0)

    Proof

    因为f(x,y)f(x, y)在点(x0,y0)(x_0, y_0)处可微,所以:

    Δy=0\Delta y = 0时可得:

    同时除以Δx\Delta x并取极限可得:

    于是同理可得:

Tip

  1. f(x,y)f(x, y)可微,则dz=fx(x,y)dx+fy(x,y)dy\mathrm{d}z = f_x'(x, y) \mathrm{d}x + f_y'(x, y) \mathrm{d}y
  2. fxf_x'fyf_y'均存在,则fxdx+fydyf_x' \mathrm{d}x + f_y' \mathrm{d}y未必是函数的全微分

2.2.2 可微的充分条件

fx(x,y)f_x'(x, y)fy(x,y)f_y'(x, y)在点(x0,y0)(x_0, y_0)处连续,则f(x,y)f(x, y)在点(x0,y0)(x_0, y_0)处可微

2.2.3 可微的充要条件

Tip

使用场景:特殊函数在特殊点处可微性的判定

2.3 多元函数连续、偏导存在、可微之间的关系

  • 例7:设函数:

    则在点(0,0)(0, 0)处函数f(x,y)f(x, y)满足:

    • A:不连续
    • B:连续但偏导数不存在
    • C:连续且偏导数存在但不可微
    • D:可微
    Answer
    • 连续性的判定:

      因为存在以下不等式:

      所以:

      又因为:

      所以最终可得:

    • 偏导数存在性的判定:

      因此,两个偏导数皆存在

    • 可微性的判定:

      使用可微的充要条件:

      显然并不可微

    所以最终选C

  • 例8:设函数:

    讨论f(x,y)f(x, y)在点(0,0)(0, 0)处的可微性

    Answer

    首先求出两个偏导数的值:

    然后考虑可微的充要条件:

    对于这个极限,考虑以下不等式:

    又因为:

    所以根据夹逼准则可得:

    因此f(x,y)f(x, y)在点(0,0)(0, 0)处可微

  • 例10:已知二元函数f(x,y)f(x, y)一阶偏导数连续,若函数z=f(x,y)z = f(x, y)满足2zxy=x+y\dfrac{\partial^2 z}{\partial x \partial y} = x + y,且f(x,0)=xf(x, 0) = xf(0,y)=y2f(0, y) = y^2,求f(x,y)f(x, y).

    Answer