Skip to content

第三节 偏导数的求导法则

Tables of Content

I. 多元复合函数的求导法则

1.1 当多元函数与一元函数复合时

若函数u=φ(t)u = \varphi(t)b=ψ(t)b = \psi(t)都在点tt处可导,函数z=f(u,v)z = f(u, v)在对应点(u,v)(u, v)具有连续偏导数,则复合函数z=f[φ(t),ψ(t)]z = f\left[ \varphi(t), \psi(t) \right]在点tt处可导,且有:

1.2 当多元函数与多元函数复合时

若函数u=φ(x,y)u = \varphi(x, y)v=ψ(x,y)v = \psi(x, y)均在点(x,y)(x, y)处具有对xx以及对yy的偏导数,函数z=f(u,v)z = f(u, v)在对应点(u,v)(u, v)处具有连续偏导数,则复合函数z=f[φ(x,y),ψ(x,y)]z = f\left[ \varphi(x, y), \psi(x, y) \right]在点(x,y)(x, y)的两个偏导数均存在,且有:

1.3 当多元函数与一元及多元函数复合时

u=φ(x,y)u = \varphi(x, y)在点(x,y)(x, y)处具有对xx及对yy的偏导数、函数v=ψ(y)v = \psi(y)在点yy处可导、函数z=f(u,v)z = f(u, v)在对应点(u,v)(u, v)处具有连续的偏导数,则复合函数z=f[φ(x,y),ψ(y)]z = f\left[ \varphi(x, y), \psi(y) \right]在点(x,y)(x, y)处的两个偏导数皆存在,且有:

  • 例1:设u=f(x,y,z)=ex2+y2+z2u = f(x, y, z) = e^{x^2 + y^2 + z^2},而z=x2sinyz = x^2 \sin y,求ux\dfrac{\partial u}{\partial x}uy\dfrac{\partial u}{\partial y}.

    Answer
  • 例2:设z=f(2xy,xsiny)+xg(eylnx)z = f(2x - y, x \sin y) + xg(e^y \ln x),其中ff具有二阶连续偏导数,gg具有二阶导数,求2zxy\dfrac{\partial^2 z}{\partial x \partial y}.

    Answer

II. 全微分形式不变性

若函数z=f(u,v)z = f(u, v)可微,则有:

而当u=u(x,y)u = u(x, y)v=v(x,y)v = v(x, y)时,此时的uuvv为中间变量,则:

由此可见,无论uuvv是自变量还是中间变量,函数z=f(u,v)z = f(u, v)的全微分形式都是一样的,此即全微分形式不变性

  • 例3:设z=eusinv,u=xy,v=x+yz = e^u \sin v, u = xy, v = x + y,求dz\mathrm{d}z.

    Answer

III. 隐函数的存在定理

3.1 一个二元方程的情况

对于方程F(x,y)=0F(x, y) = 0,若满足以下三条:

  1. F(x,y)F(x, y)U(x0,y0)U(x_0, y_0)有一阶连续偏导数
  2. F(x0,y0)=0F(x_0, y_0) = 0
  3. Fy(x0,y0)0F_y'(x_0, y_0) \neq 0

则方程F(x,y)=0F(x, y) = 0U(x0)U(x_0)上唯一确定一个具有连续导数的函数y=y(x)y = y(x),且:

Proof
  • 例4:设y=y(x)y = y(x)由方程x2+y2sin(xy)=0x^2 + y^2 - \sin (xy) = 0所确定,试求y(x)y'(x).

    Answer

3.2 一个三元方程的情况

对于方程F(x,y,z)=0F(x, y, z) = 0,若满足以下三条:

  1. F(x,y,z)F(x, y, z)U(x0,y0,z0)U(x_0, y_0, z_0)具有一阶连续偏导数
  2. F(x0,y0,z0)=0F(x_0, y_0, z_0) = 0
  3. Fz(x0,y0,z0)0F_z'(x_0, y_0, z_0) \neq 0

则方程F(x,y,z)=0F(x, y, z) = 0U(x0,y0)U(x_0, y_0)上唯一确定一个具有连续偏导数的函数z=z(x,y)z = z(x, y),且:

  • 例5:设exy2z+ez=0e^{-xy} - 2z + e^z = 0,求zx\dfrac{\partial z}{\partial x}zy\dfrac{\partial z}{\partial y}.

    Answer
  • 例6:设有三元方程xyzlny+exz=1xy - z \ln y + e^{xz} = 1,根据隐函数存在定理,存在点(0,1,1)(0, 1, 1)的一个邻域,在此邻域内该方程可以确定几个具有连续偏导数的隐函数?

    Answer

3.3 两个四元方程的情况

设函数F(x,y,u,v)F(x, y, u, v)G(x,y,u,v)G(x, y, u, v)在点P(x0,y0,u0,v0)P(x_0, y_0, u_0, v_0)的某一邻域内具有对各个变量的连续偏导数,又:

且:

在点P(x0,y0,u0,v0)P(x_0, y_0, u_0, v_0)处不等于零,则方程组:

在点P(x0,y0,u0,v0)P(x_0, y_0, u_0, v_0)的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数:

且它们满足条件:

并有:

  • 例7:设:

    ux\dfrac{\partial u}{\partial x}vx\dfrac{\partial v}{\partial x}.

    Answer

    设函数:

    则有方程组:

    对方程两边分别关于xx求偏导可得:

    解得:

    即: